Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression
نویسندگان
چکیده
The objective of this study was to investigate the effect of Mg(2+) ions on biofilm formation by Bacillus species, which are considered as problematic microorganisms in the food industry. We found that magnesium ions are capable to inhibit significantly biofilm formation of Bacillus species at 50 mM concentration and higher. We further report that Mg(2+) ions don't inhibit bacterial growth at elevated concentrations; hence, the mode of action of Mg(2+) ions is apparently specific to inhibition of biofilm formation. Biofilm formation depends on the synthesis of extracellular matrix, whose production in Bacillus subtilis is specified by two major operons: the epsA-O and tapA operons. We analyzed the effect of Mg(2+) ions on matrix gene expression using transcriptional fusions of the promoters for eps and tapA to the gene encoding β galactosidase. The expression of the two matrix operons was reduced drastically in response to Mg(2+) ions suggesting about their inhibitory effect on expression of the matrix genes in B. subtilis. Since the matrix gene expression is tightly controlled by Spo0A dependent pathway, we conclude that Mg(2+) ions could affect the signal transduction for biofilm formation through this pathway.
منابع مشابه
Evaluation of the presence and time-variable expression levels of rpoS, relA and mazf genes during biofilm formation in Staphylococcus epidermidis
Background and purpose:Staphylococcus epidermidis is an opportunistic pathogen that is involved in the development of infections associated with the use of implants and medical devices. Biofilm formation is one of the most important virulence factors of this microorganism, which vastly depends on various factors, including different proteins. In the present study, the expression levels of three...
متن کاملDoes biofilm formation have different pathways in Staphylococcus aureus?
Objective(s): Biofilm formation is one of the most important factors in the development of infections caused by Staphylococcus aureus. In this study, the expression levels of genes responsible for biofilm formation were studied in methicillin sensitive and methicillin resistant S. aureus.Materials and Methods: A total of 100 meticillin-r...
متن کاملBacillus subtilis biofilm induction by plant polysaccharides.
Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidop...
متن کاملMolecular Detection of Type II Toxin-Antitoxin Systems and their Association with Antibiotic Resistance and Biofilm Formation in Clinical Acinetobacter baumannii Isolates of Burn Patients
Background and purpose: Burn wounds are a good host for infections. Acinetobacter baumannii is an opportunistic bacterium in patients with burn infections. Toxin-antitoxin systems (TAS) are genetic elements that are essential for antibiotic resistance and biofilm formation in bacteria, including higBA and relBE TA systems. The present study aimed to investigate the frequency of higBA and relBE...
متن کاملارزیابی اثر عصاره الکلی آرتمیزیا اولیوریانا بر بیان ژنهای icaA، icaD وebps در استافیلوکوکوس اورئوس مقاوم به متیسیلین: یک گزارش کوتاه
Background and Objectives: Expression of genes related to biofilm formation in methicillin-resistant staphylococcus aureus (MRSA) can play an effective role in biofilm formation and pathogenicity. Due to the significance of antimicrobial activity of Artemisia species against biofilm producer genes, this study aimed to evaluate the effect of ethanolic extract of Artemisia oliveriana on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015